(Deep) learning for automated Gleason grading and disease associated molecular profiles

SDiPath Meeting

Bern January 10th, 2019

Manfred Claassen ETH Zurich

From single cell suspensions to tissue images - Computational pathology with CNNs

Peter Wild

Kim Fricker

Jan Rueschoff

Gleason patterns for prostate cancer grading

Automatic grading by deep learning

Convolutional neural networks primer for image analysis

 CNNs learn relevant image patterns by convolving over image patches

Automatic grading by deep learning

Training data:

5 TMAs (864 spots) with pathology expert Gleason annotation

Pathology expert Gleason annotation

Automatic grading by deep learning

(Too little) training data:

5 TMAs (864 spots) with pathology expert Gleason annotation

Solution: TRANSFER LEARNING!

Detour: successful image classification by deep learning with big data

(Big) training data:

e.g. millions of frames from internet videos

Successful grading by deep **transfer** learning

(Enough!) training data: 5 TMAs (864 spots) with Gleason annotation

Solution: TRANSFER LEARNING!

Model evaluation on test cohort and inter-pathologist variability

model vs pathologist 1

model vs pathologist 2

model prediction

Cohen's quadratic kappa = 0.75

model prediction kappa = 0.71

Model evaluation on test cohort (TMA) and inter-pathologist variability

pathologist 2 vs pathologist 1

pathologist 2

kappa = 0.71

Model predictions as pixel-level probability maps

Model predictions are triggered by epithelial structures

Gleason 3: unfused gland junctions to dissect from Gleason 4

Can we reduce the need for detailed pathologist annotations?

Local-level weak labels: e.g. Gleason 3+4

VS

Global-level weak label: e.g. Gleason 7

Training with both local- and global-level annotations

Weighted weak supervision outperforms simpler approaches

Task: classify <i>low vs high Gleason score</i> cases from The Cancer Genome Atlas (TCGA) WSI.					low grade		high grade	
dataset	# patches	# cases	Gleason low/high	! ≤6	7=3+4	7=4+3	I 8	9-10
TCGA	\sim 300'000	447	261/186	44	125	92	65	121
TMA	\sim 25'000	886	524/362	403	121		226	136

Images and single-cell data have a lot in common

Images and single-cell data have a lot in common

Flow cytometry primer

- ~10/30+ protein panel (flow/mass)
- > 10⁶ cells/experiment
- Definition/quantification cell types by manual gating

Curse of dimensionality in flow cytometry

TreeTop visualization of mass cytometry thymus data

TreeTop 1

Global unsupervised analysis of cell population heterogeneity is ambitious

Cell population differences across conditions

(Immune) therapy response is difficult to predict

Responder

Non-responder

Images and single-cell data have a lot in common

Convolutional neural networks primer for image analysis

- CNNs learn relevant image patterns by convolving over image patches
- Idea: convolve over single cells and learn relevant cell profiles

CellCnn: Convnets for discovery of cell identity biomarkers

Pathogenic T_H cell signature associated with multiple sclerosis

- Non-inflammatory neurological disease control (n = 36) vs relapseremitting MS (n = 37)
- PBMC, restimulated (PMA/ionomycin)
- 34 marker CyTOF: lineage markers, cytokines, chemokines

Burkhard Becher Felix Hartmann (UZH)

Pathogenic T_H cell signature associated with multiple sclerosis

Hartmann et al., in revision

Cell types

Intracellular Mechanisms

- Gleason score estimation & survival stratification
- Weak & strong supervision

 TreeTop for visualization of high dimensional data

- CellCnn: Cell identity biomarkers for precision medicine
 - MS associated T_H cell subset